WARMING CLIMATE THREATENS SNOWBED AND SNOW PATCH HABITATS IN NORTHERN FINLAND

Sonja Kivinen¹, Elina Kaarlejärvi², Kirsti Jylhä³ and Jouni Räisänen⁴

¹Department of Geography, University of Oulu, P.O. Box 3000, FI-90014 University of Oulu, Finland

²Department of Ecology and Environmental Sciences, Umeå University, SE-90187 Umeå, Sweden

³ Finnish Meteorological Institute, Climate Change, P.O Box 503, 00101 Helsinki, Finland

⁴Department of Physics, P.O.Box 48, FI-00014 University of Helsinki, Finland

SNOWBED AND SNOW PATCH HABITATS

SNOWBEDS

Snow melts by the end of the summer

Vascular plant species, bryophytes, lichens, and algae

Total area and quality estimated to decline

NEAR-THREATENED

Permanent snow througout the year
Bare ground and rock beneath
Snow algae and snow fungi

ENDANGERED

- short growing season
- water saturation
- infertile thin soils
- plants able to subnivean growth

RESEARCH QUESTIONS

STUDY REGION IN ENONTEKIÖ LAPLAND, NORTHWESTERN FINLAND

MAPPING THE LATE SUMMER SNOW

Satellite data:

Landsat ETM+: 27 July 2000 (195/11,12) Landsat TM: 30 July 2004 (195/11,12) 27 July 2006 (196/11,12) 4 August 2009 (196/11,12)

Snow extraction:

- Normalized Difference Snow Index
 NDSI = (band 2 band 5)/(band 2 + band 5)
- 2) Unsupervised classification to remove water bodies

Accuracy assessment:

Landsat ETM+ 27 July 2000 and aerial photographs 25 July 2000 - 500 points; 250 classified as snow and 250 as other land cover

Overall classification accuracy = 95.2%.

Error of commission: snow = 6.3%, other land cover = 3.2%

Error of omission: snow = 3.3%, other land cover = 6.2%

Interannual variation – a pixel-level analysis at 30 m resolution

Total coverage and spatial distribution in relation to altitude and aspect in years 2000, 2004, 2006, and 2009

Snow occurrence years – a grid square analysis at 1 km resolution

Snow presence (1 - 4 years) versus snow absence (0 years) in relation to altitude, terrain ruggedness, insolation and aspect; Mann-Whitney U-test

A generalized additive model (GAM) smoothed with 3 degrees of freedom for the number of snow years (0 - 4 years)

SPATIAL DISTRIBUTION OF LATE SUMMER SNOW

SPATIAL DISTRIBUTION OF LATE SUMMER SNOW

THE OCCURRENCE OF LATE SUMMER SNOW

THE OCCURRENCE OF LATE SUMMER SNOW

Recent climate variations

Climate data for 1995 – 2009: 10 km resolution grid data (Finnish Meteorological Institute)

Climate change projections

ENSEMBLES (Ensembles-Based Predictions of Climate Changes and Their Impacts)

11-model means; 25 km resolution

PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects) project

50 km resolution

Räisänen, J. and J. Eklund, 2011: 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. *Climate Dynamics*.

Jylhä K, Fronzek S, Tuomenvirta H, Carter TR & K Ruosteenoja (2008). Changes in frost, snow and Baltic sea ice by the end of the twenty-first century based on climate model projections for Europe. *Climatic Change* 86, 441–462.

RECENT TEMPERATURE TRENDS AND FUTURE PROJECTIONS

RECENT TEMPERATURE TRENDS AND FUTURE PROJECTIONS

PRECIPITATION AMOUNTS AND FUTURE PROJECTIONS

LIKELY IMPACTS OF WARMING CLIMATE

EFFECTS ON ECOSYSTEM SERVICES

CONCLUSIONS

THANK YOU!

